ОУД.03. «МАТЕМАТИКА: АЛГЕБРА, НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА; ГЕОМЕТРИЯ»
1. Цель дисциплины: дать обучающимся базовые знания, навыки, терминологию, ознакомление с основными математическими понятиями и практическим применением.
-обеспечение сформированности представлений о социальных, культурных и исторических факторах становления математики;
-обеспечение сформированности логического, алгоритмического и математического мышления;
-обеспечение сформированности умений применять полученные знания при решении различных задач;
-обеспечение сформированности представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления.
2. Место дисциплины в структуре ППКРС:
Учебная дисциплина «Математика: алгебра и начала математического анализа; геометрия» является учебным предметом обязательной предметной области «Математика и информатика» ФГОС среднего общего образования.
В профессиональных образовательных организациях, реализующих образовательную программу среднего общего образования в пределах освоения ППКРС СПО на базе основного общего образования, учебная дисциплина «Математика» изучается в общеобразовательном цикле учебного плана ППКРС СПО на базе основного общего образования с получением среднего общего образования.
В учебных планах ППКРС учебная дисциплина «Математика» входит в состав общих общеобразовательных учебных дисциплин, формируемых из обязательных предметных областей ФГОС среднего общего образования, для профессий СПО.
3. Требования к результатам освоения дисциплины:
В результате изучения дисциплины обучающийся должен
Алгебра
уметь
-выполнять арифметические действия над числами, сочетая устные и письменные приемы, находить приближенные значения величин и погрешности вычислений (абсолютная и относительная); сравнивать числовые выражения;
-находить значения корня, степени, логарифма, тригонометрических выражений на основе определения, используя при необходимости инструментальные средства;
-пользоваться приближенной оценкой при практических расчетах;
-выполнять преобразования выражений, применяя формулы, связанные со свойствами степеней, логарифмов, тригонометрических функций;
-использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.
Функции и графики
уметь:
-вычислять значение функции по значению аргумента при различных способах задания функции;
-определять основные свойства числовых функций, иллюстрировать их на графиках;
-строить графики изученных функций, иллюстрировать по графику свойства элементарных функций;
-использовать понятие функции для описания и анализа зависимостей величин;
-использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.
Начала математического анализа
уметь:
-находить производные элементарных функций;
-использовать производную для изучения свойств функций и построения графиков;
-применять производную для проведения приближенных вычислений, решать задачи прикладного характера на нахождение наибольшего и наименьшего значения;
-вычислять в простейших случаях площади и объемы с использованием определенного интеграла;
-использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.
Уравнения и неравенства
-решать рациональные, показательные, логарифмические, тригонометрические уравнения, сводящиеся к линейным и квадратным, а также аналогичные неравенства и системы;
-использовать графический метод решения уравнений и неравенств;
-изображать на координатной плоскости решения уравнений, неравенств и систем с двумя неизвестными;
-составлять и решать уравнения и неравенства, связывающие неизвестные величины в текстовых (в том числе прикладных) задачах.
-использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: построения и исследования простейших математических моделей.
Комбинаторика, статистика и теории вероятностей
уметь:
-решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
-вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
-использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: анализа реальных числовых данных, представленных в виде диаграмм, графиков; анализа информации статистического характера.
Геометрия
уметь:
-распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
-описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
-анализировать в простейших случаях взаимное расположение объектов в пространстве;
-изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
-строить простейшие сечения куба, призмы, пирамиды;
-решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
-использовать при решении стереометрических задач планиметрические факты и методы;
-проводить доказательные рассуждения в ходе решения задач;
-использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур; вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
знать/понимать
-значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
-значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
-универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
-вероятностный характер различных процессов окружающего мира;
4.Общая трудоемкость дисциплины составляет
Максимальная учебная нагрузка 427 часов, в том числе:
обязательной аудиторной учебной нагрузки обучающегося 285часов;
самостоятельной работы обучающегося 142 часа;
форма контроля – накопительная система оценок;
форма аттестации – экзамен.